Iterative approximation of fixed point for Φ-hemicontractive mapping without Lipschitz assumption
نویسنده
چکیده
for all x ∈ E, where 〈·,·〉 denotes the generalized duality pairing. It is well known that if E is a uniformly smooth Banach space, then J is single valued and such that J(−x) =−J(x), J(tx) = tJ(x) for all x ∈ E and t ≥ 0; and J is uniformly continuous on any bounded subset of E. In the sequel, we shall denote single-valued normalized duality mapping by j by means of the normalized duality mapping J . In the following, we give some concepts.
منابع مشابه
On Fixed Point Results for Hemicontractive-type Multi-valued Mapping, Finite Families of Split Equilibrium and Variational Inequality Problems
In this article, we introduced an iterative scheme for finding a common element of the set of fixed points of a multi-valued hemicontractive-type mapping, the set of common solutions of a finite family of split equilibrium problems and the set of common solutions of a finite family of variational inequality problems in real Hilbert spaces. Moreover, the sequence generated by the proposed algori...
متن کاملIterative algorithms for families of variational inequalities fixed points and equilibrium problems
متن کامل
Strong Convergence Theorem for Fixed Points of Nearly Uniformly L−Lipschitzian Asymptotically Generalized Φ-Hemicontractive Mappings
Let C be a nonempty convex subset of a real Banach space E in which the normalized duality map is norm-to-norm uniformly continuous on bounded subsets of E. Let T be a nearly uniformly L−Lipschitzian asymptotically generalized Φ-hemicontractive map in the intermediate sense. An iterative process of the Manntype is proved to converge strongly to the unique fixed point of T . Under this setting, ...
متن کاملOn the Monotone Mappings in CAT(0) Spaces
In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods by combining the resolvent method with Halpern's iterative method and viscosity approximation method for finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations in ...
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005